products

Optically MgO LiNbO3 Crystal Good Susceptibility To Photorefractive Damage

Basic Information
Place of Origin: China
Brand Name: CRYLINK
Certification: Iso9001
Model Number: CRYLINK-MgO LiNbO3 Nonlinear Crystal
Minimum Order Quantity: 1 Pieces
Price: negotiation
Packaging Details: Carton
Delivery Time: 3-4 weeks
Payment Terms: TT
Supply Ability: 100 pieces /month
Detail Information
Name: MgO:LiNbO3 Clear Aperture: >90%
Perpendicular: 5 Surface Quality: 10/5
High Light:

zinc germanium phosphide

,

mgo linbo3


Product Description

MgO:LiNbO

One of the most important drawbacks of popular LiNbO3 crystal is its susceptibility to photorefractive damage (optically induced change of refractive index, usually under exposure with blue or green CW light). The usual way to eliminate this effect is to keep LN crystals at elevated temperatures (400K or more). Another way to prevent photorefractive damage is MgO-doping (usually at levels of around 5 mol% for congruent LN). What is good is that such MgO-doped congruent LiNbO3 crystals have a much lower coercive field value than undoped LN crystals.Recently, it was shown that stoichiometric LiNbO3 crystals, doped with only 1 mol% MgO, possess higher photorefractive damage threshold than 5 mol% MgO-doped congruent LN samples.

MgO:LiNbO3 A kind of nonlinear crystal optimize the performance of LiNbO3

Pure LiNb03 (LN) is a good candidate for various optical devices, but has a major disadvantage due to its low threshold optical damage. MgO-doped LN(congruent compositions) is one of the possible solutions to deal with this problem. MgO doping has played an important role in LN and shown an increased threshold laser beam strength by 100 times. An interesting point is that every physical property of MgO-doped LN (e.g. transition temperature, activation energy, optical band , optical absorption spectra, shift of OH- vibration frequency, density, and electric activation energy based on our previous measurements4) has threshold composition at just above 5 mole% of MgO concentration.

 

Polishing

Polishing Specification for Laser Grade Ⅰ
Orientation Tolerence <0.5°
Thickness/Diameter Tolerance ±0.1 mm
Surface Flatness </8@632nm
Wavefront Distortion </4@632nm
Surface Quality 20/10
Parallel 30
Perpendicular 15
Clear Aperture >90%
Chamfer <0.2×45°
Polishing Specification for Laser Grade Ⅱ
Orientation Tolerence <0.2°
Thickness/Diameter Tolerance ±0.02 mm
Surface Flatness /10 @632nm
Wavefront Distortion </8 @632nm
Surface Quality 10/5
Parallel 10
Perpendicular 5
Clear Aperture >90%
Chamfer < 0.2×45°

Contact Details
june

Phone Number : +8618699681379